1. Let

\[y(n) = \sum_{k=-\infty}^{n} \sum_{l=-\infty}^{k} x(l) \]

Express \(Y(z) \) in terms of \(X(z) \). Simplify your results.

2. Let \(0 < a < 1 \).

\[H_1(z) = \frac{1-a}{1-az^{-1}}, \quad H_2(z) = \frac{1-a}{2} \frac{1+z^{-1}}{1-az^{-1}}. \]

What types of filters are they? Which one is better?

3. A stable digital filter has the following transfer function

\[H(z) = \frac{z^4 + 1}{(z+.5)(z-.5)^2} \]

(a) Derive the poles/zeros of \(H(z) \) and sketch them on a pole/zero plot. State the ROC.

(b) Derive a stable \(h[n] \) from the given \(H(z) \).

4. Given

\[y_1[n] = x[n] + 2y_1[n-1] - 2y_1[n-2] \]

\[y_2[n] = y_1[n] - y_1[n-1] \]

(a) Derive \(H(z) = Y_2(z)/X(z) \)

(b) Derive a causal impulse response \(h[n] \).

(c) Provide a new set of difference equations such that a stable and causal system exists that has the same magnitude response as \(H(z) \).

5. Suppose a music signal \(s(t) \) has a cut-off frequency of 5 KHz. We obtain \(s_1(n) \) with a sampling freq. 10 KHz. After getting \(s_1(n) \), we find that the actual cut-off freq. for \(s(t) \) is in fact 3 KHz, therefore, we really only need to get \(s_2(n) \) with a sampling freq. 6 KHz. Explain how you can get \(s_2(n) \) from \(s_1(n) \) without using a D/C or C/D converter. Use a simple figure to show your approach.