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Abstract

Source traffic streams as well as aggregated traffic flows often exhibit long-range-dependent (LRD) properties. In this paper, we study
traffic streams through their counting process representation. We first study the condition for the measured LRD traffic, as described by the
interarrival time and packet size sequences, to be sufficiently well approximated by a synthesized stream formed by recording the counting
state of the traffic at the start of each time slot. We then demonstrate that the burstiness of the counting processes is not well characterized by
the Hurst parameter. We model a counting process by constructing a multiplicative multifractal process, which contains only one or two
parameters. We study the LRD property of such processes, and show that the model has well-defined burstiness descriptors, and are easy to
construct. We consider a single server queueing system, which is loaded, on one hand, by the measured processes, and, on the other hand, by
properly parameterized multifractal processes. In comparing the system-size tail distributions, we demonstrate our model to effectively track
the behavior exhibited by the system driven by the actual traffic processes. Our study may help resolve a hot debate on the modeling of an

often used trace of VBR video traffic. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent analysis of high-quality traffic measurements have
revealed the prevalence of long-range-dependent (LRD) (or
self-similar) features in traffic processes loading packet
switching communications networks. Included are local
area networks (LANs) [10], wide area networks (WANs)
[13], variable-bit-rate (VBR) video traffic [1,8], and world
wide web (WWW) traffic [2].

With LRD traffic measured in many data networks, two
related questions arise. One is how to parsimoniously model
LRD traffic? The other is: what is the impact of LRD traffic
on network performance? A distinguished issue along the
first line is the hot debate on the modeling of LRD VBR
video traffic. The finding of the LRD features in VBR video
traffic [1,8] is thought to imply that Markovian processes
may not be effective in modeling measured video traffic.
However, Heyman and Lakshman [9] showed that Marko-
vian processes with suitable degree of complexity can fit the
system-size tail distribution quite well. We show in this
paper that a key root of the underlying modeling difficulty
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relates to the inefficiency involved in using the Hurst para-
meter to characterize the burstiness of LRD traffic.

To gain an understanding of the first question, we shall
base our study on carrying out queueing performance analy-
sis, using both the measured and the modeled traffic
processes to drive a queueing system. For the modeling of
LRD traffic, an issue of much interest is whether and how
multifractal can be employed to model the LRD feature of
measured traffic [4,14]. Using Telcordia’s LAN and WAN
traffic trace data, we have shown [5] that the associated
interarrival time series and packet length sequences are
LRD, and are multifractals over certain finite time scale
ranges. We have developed a method [5] to model the inter-
arrival time series and the packet length sequences using
two multiplicative multifractals.

Network traffic is often measured by collecting
interarrival-time and packet-length statistics. For reference
purposes, we refer to such a description as the customary
model for network traffic. Aggregated traffic flows
measured at a network node are presented as a stochastic
counting process. The counting process is a more compact
representation of a network traffic process. We examine in
this paper whether a counting process can sufficiently
well represent a network traffic flow. If so, we study here
whether the counting process can be well approximated by a
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Fig. 1. Schematics for the pattern of (a) Traffic B, (b) Traffic P, (c) Traffic B
and (d) Traffic P.

multiplicative multifractal. We demonstrate here that a
counting process can indeed sufficiently well represent
LRD traffic flow, provided that the length of the time slot
used to obtain the counting process is not longer than the
mean packet delay time. The key contribution of this paper
is to demonstrate that LRD counting processes, as in the
case for interarrival time series and the packet length
sequences of a network traffic [5], can be well approximated
by multiplicative multifractals. Furthermore, we demon-
strate here that the burstiness features of LRD traffic may
not be properly characterized by the Hurst parameter. This
finding implies that the LRD nature of many observed VBR
video traffic streams does not by itself imply that such a
process is too bursty to be properly modeled by a Markovian
process. Indeed, we have found that among the four types of
measured traffic streams studied here, namely, LAN, WAN,
WWW, and VBR video traffic processes, video traffic is the
least bursty. Hence, Markovian models can be quite effec-
tive in describing the statistics of such video traffic streams
[9]. We show here that multiplicative multifractal processes
provide another effective alternative for modeling such
LRD processes.

We have chosen four different types of measured LRD
network traffic: LAN, WAN, WWW, and VBR video traffic
processes, for use in this study. The LAN and VBR video
traffic data has been obtained from Telcordia. They are
denoted as pAug.TL and MPEG.data, respectively'. The
LAN traffic pAug.TL contains 1 million points representing
measured values for packet arrival time stamps and packet
sizes. It covers a time span of 3142.8 s. The video data

' This is available at ftp.telcordia.com under the directory /pub/world/
wel/lan_traffic and /pub/vbr.video.trace.

consists of 174,136 integers, representing the number of
bits per video frame (at 24 frames/s for approximately
2h). The WAN and WWW trace data were collected on
the FDDI ring of the UCLA campus backbone. Two such
trace data flows, denoted as Sample-B (WAN) and S3p80
(WWW), will be used in this study. Sample-B represents
measured values for 3.7 million arrival time stamps and
packet sizes. It covers a time span of 989.6 s. S3p80 repre-
sents measured values for 2 million arrival time stamps and
packet sizes. It covers a time span of 782.0 s. We demon-
strate here that all of the traffic processes considered here
can be readily and effectively modeled as multiplicative
multifractal counting processes.

The remaining of the paper is organized as follows. In
Section 2, we consider, first, how to represent a LRD traffic
by its counting process, and second, the condition for this
representation to be valid. We point out a limitation
involved in using the Hurst parameter to characterize the
burstiness of LRD traffic, and discuss its implications to the
modeling of VBR video traffic processes. In Section 3, we
outline the procedure used for constructing a multiplicative
multifractal. We then discuss the LRD property of such
processes. In Section 4, we show that the burstiness exhib-
ited by a multifractal traffic process can be well expressed in
terms of certain model descriptors. This feature enables us
to develop a systematic approach for modeling measured
LRD counting processes. In Section 5, we consider a single
server queueing system that is loaded, on one hand, by a
measured LRD process, and, on the other hand, by a prop-
erly parameterized multiplicative multifractal process. In
comparing the system-size tail distributions of both systems,
we demonstrate our model to effectively track the behavior
exhibited by the system driven by measured traffic process.
Conclusions are drawn in Section 6.

2. Representing a LRD traffic by counting processes

Two random processes, the interarrival time series, {7;},
where T; denotes the ith interarrival time between two
successive packet arrivals, and the packet length sequence,
{B;}, where B; represents the length of the ith packet, are
used to define a traffic process. This is schematically shown
in Fig. 1(a). We denote this traffic characterization by
Traffic B.

For many network systems, such as ATM networks,
messages are segmented into network layer PDUs (i.e.,
packets) that have relatively short maximum packet lengths.
For such networks, packets are virtually of fixed size.
Hence, we define a traffic presentation model under which
we set the ith packet length (B;) equal to the mean of the
packet length, b = > _| B;/n, while {T;} is used as before.
This is schematically shown in Fig. 1(b). We denote this
traffic pattern by Traffic P.

Two counting random processes can also be defined.
These processes represent the number of bits and the
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Fig. 2. (a) System-size tail probabilities obtained when Traffic B (solid
lines) and Traffic B (dashed lines) of the WWW traffic S3p80 are used to
drive a queueing system. Three curves, from top to bottom, correspond
to p= 0.7, 0.5, and 0.3, respectively. The length of the time slot Az used
to generate Traffic Bis 0.003 s; (b) same as (a) except now the length of the
time slot is 0.024 s.

number of packets arriving every At seconds. We denote
them by B={B;,i=1,2,3,...}) and P={P;, i=
1,2,3,...}, respectively. The variable B; represents the
number of packet bits arriving during the ith interval. The
variable P; represents the number of packets arriving across
the ith time slot, each packet of size b bits. As is evident,
these processes can be thought of as being derived from
Traffic B and Traffic P, respectively.

For the LAN, WAN, and WWW traffic trace data
described in Section 6, we obtain 2'8 intervals for the
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Fig. 3. Ratio (in logarithmic scale) of the mean delay time and the length of
the time slots chosen for constructing the counting processes vs. the utiliza-
tion p.

underlying counting process models. Hence, At=
377x107°, 120X 1077, and 2.98x 107 s for WAN
data Sample-B, LAN data pAug.TL, and WWW data
S3p80, respectively.

To associate a time of arrival with the data included in
each interval, we select the following simple model. We
record the counts B; and P, to occur at the start of the ith
time slot (we shall observe later that one can use any other
distribution of the counts across the interval), as shown
schematically in Fig. 1(c) and (d). We denote the resulting
processes as Traffic B and Traffic P. Note the VBR video
traffic process presented in Section 1 is already in the form
of Traffic B.

As demonstrated below, when the system is loaded by
traffic processes exhibiting LRD behavior, for many
network applications and regular queueing performance
analysis purposes, Traffic B and Traffic P are equivalent
to Traffic B and Traffic P, respectively.

Consider a single server queueing system using a FIFO
service discipline and an infinite buffer. To compare the
performance of the system when it is loaded by Traffic B
and Traffic B or by Traffic P and Traffic P, we proceed as
follows. We use them to drive the queueing system, and then
compare the system-size tail probabilities under different
utilization levels. We have observed that for LAN traffic
data pAug.TL and WAN traffic data Sample-B, when the
utilization level is p = 0.3, the system-size tail probabilities
are the same for both queueing systems. For WWW traffic
S3p80, however, we do observe small differences in the
system-size tail probabilities. This is shown in Fig. 2(a),
where the solid and dashed curves are obtained when Traffic
B and Traffic B of S3p80 are used to drive the queueing
system, respectively. Three curves, from top to bottom,
correspond to utilization levels p= 0.7, 0.5, and 0.3.
Since even in this worst case, the difference in the system-
size tail probabilities between the two queueing systems can
still be ignored, we can safely conclude that Traffic B and
Traffic P can sufficiently well represent Traffic B and Traf-
fic P, for the traffic data considered here.

At first sight, this result may sound counterintuitive. After
all, Traffic B is not identical to Traffic B. Neither is
Traffic P is identical to Traffic P. How can we understand
this result?

Note that the difference between the mean packet delay
times for the counting process representation and the origi-
nal traffic can be at most Az, the length of the time slot
chosen for obtaining Traffic B or Traffic P. Hence, when
At is much smaller than the mean packet delay time, which
is true for LRD traffic when the utilization is not too low,
then counting processes can sufficiently well represent their
corresponding network traffic, at least in terms of system
performance. This is the underlying mechanism for the
above observation (Fig. 2(a)) to be true. This understanding
immediately suggests that, if we approximate Traffic B of
WWW traffic S3p80 by Traffic B using a longer time slot,
then the approximation will be worse. This is indeed the
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Fig. 4. System-size tail probabilities obtained when Traffic B (solid lines)
and Traffic P (dashed lines) of LAN traffic pAug.TL are used to drive a
queueing system. Three curves, from top to bottom, correspond to p = 0.7,
0.5, and 0.3, respectively.

case, as shown in Fig. 2(b), where A is eight times the
value of Az (A’ = 2.40 X 102 5). As before, the solid and
dashed curves are obtained when Traffic B and Traffic B of
S3p80 are used to drive the queueing system, respectively.
The three curves, from top to bottom, correspond to utiliza-
tion levels p = 0.7, 0.5, and 0.3. To be quantitative, we
compute the dimensionless mean delay time (in units of
the length of the time slot) vs. the utilization level p for
the LAN, WAN, and WWW traffic data considered here.
This is shown in Fig. 3. We observe that for high utilization
levels, the mean delay time is orders of magnitude longer
than the length of the time slots. This result points out that to
construct a traffic process from {Bi} or {P;} time series, we
can actually record them anywhere inside the corresponding
time slot. Note this result is qualitatively equivalent to a
result obtained by Erramilli et al. [3], where they showed
that locally shuffling the order of arriving packets leads to
only a slight change in the mean delay time.

Fig. 3 also explains why the WWW traffic is the worst
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Fig. 5. Variance-time plots (in logarithmic scale) for Traffic B and
Traffic P of LAN traffic pAug.TL. The dash dot dot dot line is the ‘Refer-
ence’ line with slope —1.

case. For light and medium utilization levels, the mean
delay time is actually smaller than the length of the chosen
time slot Az. This results in the difference in the system-size
tail probabilities shown in Fig. 2(a). If we choose At’ = 8Az,
then for low and medium utilization levels, the mean delay
time is much smaller than A¢’, and Traffic B does not repre-
sent Traffic B (Fig. 2(b)) well. However, for high utilization
level, p = 0.7, a model using either time slot Az or At’ yields
good result (Fig. 2(a) and (b)).

Before ending this section, we point out a limitation of
using the Hurst parameter for characterizing the burstiness
of the LRD traffic. It is argued [10] that a larger H value
corresponds to more bursty traffic. For example, the heavy-
tailed ON/OFF model exhibits such behavior when the
burstiness is defined by the mean queue size [12]. Recently,
this idea (i.e., using H as an index of burstiness) has been
slightly corrected by Neidhardt and Wang [11] based on the
study of the fractional Brownian motion model. Our obser-
vation is that a burstier traffic is not necessarily associated
with a larger value for the Hurst parameter. This point is
readily demonstrated by considering, for example, Traffic B
and Traffic P of LAN traffic pAug.TL. Fig. 4 shows the
system-size tail probabilities (used henceforth as a measure
of burstiness) when Traffic B (solid lines) and Traffic P
(dashed lines) are used to drive the queueing system.
Three curves, from top to bottom, correspond to utilization
levels p= 0.7, 0.5, and 0.3. While we observe that both
Traffic B and Traffic P are very bursty, Traffic B is more
bursty. Using the variance-time relation [10]: Var(X"™) ~
m*H =Y o estimate the Hurst parameter H for Traffic B and
Traffic P, we find, however, that the value for H estimated
from Traffic P is quite close to that estimated from
Traffic B, as shown in Fig. 5. This result suggests that
video traffic processes that have LRD properties may not
be characterized as too bursty flows (in terms of their
induced queueing tail behavior). This is indeed so, as will
be shown in Section 5. In Section 3, we demonstrate that the
key parameter(s) for multifractal traffic streams (i.e., those
characterizing the multiplier functions) can be used to better
indicate the burstiness feature of a measured traffic process.

3. Multifractal modeling of counting processes

In this section, We recapitulate the procedure for
constructing a multiplicative multifractal from a multiplier
function and discuss the LRD properties of the multiplica-
tive multifractal counting processes.

3.1. Construction of multiplicative multifractals

Consider a unit interval. Associate it with a unit mass.
Divide the unit interval into two (say, left and right)
segments of equal length. Also partition the mass into two
fractions, r and 1 — r, and assign them to the left and right
segments, respectively. The parameter r is in general a
random variable, governed by a probability density function
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Fig. 6. A schematic illustrating the construction rule of a multiplicative
multifractal.

P(r), 0 = r = 1. The fraction r is called the multiplier, and
P(r) is called the multiplier function. Each new subinterval
and its associated weight (or mass) are further divided into
two parts following the same rule. This procedure is sche-
matically shown in Fig. 6, where the multiplier r is written
as ry, with i indicating the stage number. Note the scale (i.e.,
the interval length) associated with stage i is 2 '. We assume
that P(r) is symmetric about r = 1/2, and has successive
moments [y, iy,.... Hence r; and 1—r; both have
marginal distribution P(r). The weights at the stage
N, {w,,n= 1,...,2N}, can be expressed as w,=
ujly...uy, where u;, I =1,...,N, are either rj or 1 —ry.
Thus, {u;, i = 1} are independent identically distributed
random variables having multiplier function P(r). When
w,(N) is interpreted as the loading to a network (represent-
ing the total count of message units) in a time slot of length
27N T, where T is the total time period one is interested in,
then this process becomes a counting traffic process model.
The multifractality of the multiplicative process refers to the
fact that M,(e) = E(Xoey W,(N)T) ~ €?, with e=
27V, 1(g) = —In(2u,)/In2 [6].

3.2. Properties of multiplicative multifractals

For the weights at stage N, we prove the following prop-
erties to hold (for a shorter account of these results, see also

[6]):

@

Ew) = E(w,) = E(uyus...uy) =277, n=1,..2".
M

(ii)

EWw?) = E((utty...up)") = puy- 2

In particular

Ew*) = ) A3)

05

Qe &2 —

0 —d

—_— 1

Fig. 7. A schematic showing the form for the multiplier function as
described by Eq. (9).

and

Var(w) = Varw,) =) =27, n=1,..,2". @)
(iii)

Var(W™) = uy (4pp) ¢ =272, )

where W™ = Wip—me1 T -+ Fwp)im, m= 2k k=
1,2,..., and i = 1. This is proven by expressing W =
27¥x, where x is a weight at stage N — k.

Eq. (5) expresses a variance-time relation. For LRD traffic
[10], Var(W™) ~ m*" 72 where 1/2 < H < 1 is the Hurst
parameter. For multiplicative multifractal processes, when
N is large and w, > 0, the term ,ufzv (4,u2)_k dominates.
When the term 2”2V in Eq. (5) is dropped, the functional
variation of log Var(W™) vs. log m is linear. The resulting
slope, —log(4u,)/1og2, provides an estimate of 2H — 2. A
moment of thinking will convince us that this slope is an
upper bound for 2H — 2. Hence

H = —1logyu,. (6)

Since the multiplier distribution P(r) is defined for 0 = r =
1, and is symmetric about 1/2, hence its mean is 1/2, and its
variance is upper bounded by 1/4. We thus have (112)? =
wy = (1/2)* + (1/4). Therefore 1/2 < H < 1, with H = 1
corresponding to deterministic time series (i.e.,
P(r) = &(r — 1/2)). We thus observe that a multiplicative
multifractal traffic stream also possesses LRD property.

Let us check how good the linearity defined by Eq. (5) is.
For this purpose, we consider three different functional
forms for the multiplier function, namely, double exponen-
tial with parameter ¢,

P(r) ~ e =12, )
Gaussian with parameter a,

P(r) ~ e*ag(r71/2)2 (8)
and a function being of the form

q+pdr—1/2), 12—-d=r=1/2+d,

P(r) = : €))
0, otherwise,

where 0 = d = 1/2. The last function is schematically

shown in Fig. 7. Note that the three parameters d, p, and g
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Fig. 8. logVar(W(m)) vs. log m curves for (a) a = 10, (b) a = 50, and
(c) a = 100.

are related by the equation, p + 2qgd = 1. Hence, the func-
tion contains two independent parameters. We shall choose
p and d as the two basic parameters. Note one may introduce
a parameter equivalent to d for the functions characterized
by Egs. (7) and (8). Due to exponential decay of Egs. (7) and
(8), however, such a parameter is not too interesting. Also
note that we may rewrite Egs. (7) and (8) as P(r) ~
ewlr*mlﬁ, with 8 =1 for the double exponential, and 2
for the Gaussian. Hence, Eqs. (7) and (8) really contain
two parameters with a prefixed parameter 3.

We generate a number of realizations of multiplicative
processes with P(r) given by one of the above three forms.
We then compute the variance-time relation from the gener-
ated time series. Some examples of the variance-time curves
are shown in Fig. 8, with P(r) given by Eq. (8) and N = 18.
We observe that indeed the variance-time curves are
approximately linear, with the degree of linearity being
better for larger u,.

We can furthermore check how tight the bound deter-
mined by Inequality (6) is by estimating H from the

1'2 T T T T
- I
a.’. 1.0—' \\ -
) i \
B R,
£ L OD\ ]
g 0.8 %, -
od N
- \\
2 I AN 1
5 0.6 AN E
jaul L N 1
0.4/ . . . .

0.10 020 030 040 050 0.60
Second moment u,

Fig. 9. Hurst parameter vs. the second moment u,. The dashed line is
computed according to the right-hand side of Inequality (6), while the
points designated by squares, diamonds and triangles are directly estimated
from multiplicative processes with their multiplier distributions given by
Egs. (7)-(9).

() p=0.5, d=0.27

Log,,P(Queue length > x)

Log,,P(Queue length > x)

-3

0 500 1000 1500 2000
Queue length x (Packets)

Fig. 10. For the fixed utilization level p = 0.5, the system-size tail prob-
abilities obtained when different multiplicative multifractal traffic are used
to drive a queueing system. The parameters for the different multifractal
traffic are (a) d=0.27, and p=0.5, 0.6, 0.7, 0.8; and (b) p =0.5, and
d=0.37,0.32, 0.27, 0.22.

variance-time curves and comparing it with the right-hand
side of Inequality (6). Fig. 9 shows such a comparison,
where the dashed curve is generated from equation H =
—(1/2)log, ,. The points denoted by diamonds, triangles,
and squares are estimated from multiplicative processes
with P(r) given by Egs. (7)—(9), respectively. We observe
that the bound given by Inequality (6) is very tight, espe-
cially for not too small values of w,. We shall further show
in Section 4 that a burstier multifractal traffic is associated
with a larger value for w,, hence a smaller value for the
Hurst parameter.

4. Burstiness of the multiplicative multifractal counting
processes

In this section, we discuss how the parameters in the
multiplier functions described by Eqgs. (7)—(9) control the
burstiness of the multiplicative multifractal traffic.

We first consider the physical meaning of the a para-
meters in Egs. (7) and (8). Consider P(r) ~ efa‘rfmlﬁ,
with @ — oo. Then P(r) — &(r — 1/2). If we choose P(r) =
6(r — 1/2), then all the weights are identical. They consti-
tute a non-bursty (or deterministic) traffic. This indicates
that the burstiness of the multiplicative multifractal traffic
described by Egs. (7) and (8) decreases with the a para-
meter. For more details on this feature, we refer to our
earlier paper [5].

The physical meaning of the parameters p and d in Eq. (9)
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Fig. 11. System-size tail probabilities obtained when Traffic B of pAug.TL
(solid lines both in (a) and (b)), and multifractal Traffic Processes
constructed from a multiplier function being (a) double exponential with
parameter «, = 11, and (b) Gaussian with parameter a, = 36, are used to
drive a queueing system. Three curves, from top to bottom, correspond to
p=0.7,0.5, and 0.3, respectively.

is as follows. Parameter p indicates the mean of the counting
process; parameter d describes the variation of the traffic
around the mean function. A direct consequence of this
physical interpretation is that the burstiness of the modeled
traffic increases with d when p is fixed; and decreases with p
when d is fixed. This property can be readily demonstrated
by feeding the multifractal counting processes into a queue-
ing system, and examining the system-size tail probabilities.
Fig. 10(a) shows the system-size tail probabilities when d is

J. Gao, 1. Rubin / Computer Communications 24 (2001) 1400-1410

fixed to be 0.27 and the utilization is set equal to p = 0.5.
The four illustrated curves, from top to bottom, correspond
to p = 0.5, 0.6, 0.7 and 0.8. The results for a fixed value of
p=0.5 and p=0.5 are shown in Fig. 10(b), where four
curves, from top to bottom, correspond to d = 0.37, 0.32,
0.27, and 0.22, respectively. Clearly, we observe that the
burstiness of the multifractal counting processes increases
with d when p is fixed, and decreases with p when d is fixed.

The above burstiness behavior implies that a burstier
multifractal traffic is associated with a larger value for w,.
Because H = —(1/2)log,, (Inequality(6) and Fig. 9),
hence a burstier multifractal traffic is associated with a smal-
ler value for the Hurst parameter. This contrasts sharply
with the heavy-tailed ON/OFF model or the fractional
Brownian motion model, where a burstier traffic is asso-
ciated with a larger value for the Hurst parameter.

For our subsequent discussion on the modeling of
measured traffic, we need to first select a multiplier function.
For example, we can use one of the multiplier functions
described by Egs. (7)—(9). For this purpose, we consider
the system-size tail probabilities of a single server queueing
system, which is loaded, on one hand, by Traffic B of the
LAN traffic pAug.TL, and on the other hand, by the multi-
plicative multifractal traffic characterized by the multiplier
function described by Egs. (7)—(9) with suitable corre-
sponding parameters (the discussion on the selection of
the parameters will be postponed to Section 5). The results
are shown in Fig. 11(a) and (b) for the multiplier functions
described by Egs. (7) and (8), and Fig. 12(a) for the multi-
plier function described by Eq. (9). The solid (and dashed)
curves display the results obtained when Traffic B of
pAug.TL (and its multiplicative multifractal model) are
used to drive the queueing system. The three depicted
curves, from top to bottom, correspond to utilization levels
p=0.7, 0.5, and 0.3, respectively. The parameters used to
generate the multiplicative multifractal processes are, o, =
11, for Fig. 11(a), a, = 36, for Fig. 11(b), and (p,d) =

Log,oP(Queue length > x)

(p.d)=(0.66,0.27)

(0) pAug.TL: Troffic B {1 —9

(p.d)=(0.77,0.35)

(b) pAug.TL: Traffic B 1

(c) pAug.TL: Troffic P 1
(p.d)=(0.81,0.27)

500 1000 1500 2000
Queue length x (Packets)

0O 500 1000 1500 2000
Queue length x (Pockets)

0 500 1000 1500 2000
Queue length x (Packets)

Fig. 12. System-size tail probabilities obtained when (a, b) Traffic B and (c) Traffic P (solid curves) of pAug.TL, and multifractal traffic processes constructed
from a multiplier function characterized by Eq. (9) with parameter pair (a) (p,d) = (0.66,0.27), (b) (p,d) = (0.77,0.35), and (c) (p,d) = (0.81,0.27) (all
dashed curves), are used to drive the queueing system. Three curves, from top to bottom, correspond to p = 0.7, 0.5, and 0.3, respectively.



J. Gao, 1. Rubin / Computer Communications 24 (2001) 1400-1410 1407

-
N

L o p=07
I o p=05 ]
1.0 o p=03 -
a [
& 0.8 -
] I
g L
5 0.6_‘ —
a
0.4 — ]
0.2 1 1 . .

0.10 0.20 0.30 0.40 0.50
Parameter d

Fig. 13. Equi-burstiness parameter curves corresponding to pAug.TL for
three utilization levels, p = 0.3, 0.5, and 0.7.

(0.66,0.27), for Fig. 12(a). We first note that all three fittings
to the system-size tail probabilities, each using a different
multiplier function, are good. This indicates that, given a
careful selection of the multiplier function parameter(s), the
exact functional form for the multiplier function may not be
important in fitting the system-size tail probabilities.

For the traffic process we modeled in our study, the fitting
that uses the multiplier function described by Eq. (9) yields
the best result. This is understandable, since Egs. (7) and (8)
only contain one adjustable parameter, while Eq. (9)
contains two adjustable parameters, hence it is more flex-
ible. Hence, we select the multiplier function to be charac-
terized by Eq. (9) for modeling measured traffic studied in
the following section.

5. Multifractal modeling of measured counting processes

The system-size tail distribution serves as a key perfor-
mance measure in the engineering, analysis, and design of
communication network systems. This statistic is readily
measurable even without collecting a traffic trace data.
Hence, our purpose for modeling a measured counting
process is to find a single parameter pair (p,d) for the multi-
plier function so that when the multiplicative multifractal
counting process is used to drive a queueing system, the
system-size tail probabilities under light, medium, and
high loading conditions are simultaneously very close to
those of a queueing system driven by the measured traffic
trace data. Note that the system-size tail distribution
provides an accurate measure on the degree of the burstiness
of a network traffic. If we can indeed find a single parameter
pair (p,d) for the multiplier function, then we have found a
simple and accurate method of characterizing the burstiness
of a traffic.

Since there is no a priori guarantee that a single parameter
pair (p,d) would exist such that the queueing system driven
by the multifractal traffic under different loading conditions
would exhibit similar system-size tail behavior to a queue-

ing system driven by a measured traffic process, we need to
develop a systematic approach to check whether our goal is
achievable. And if it is achievable, will the systematic
approach also tell us how to select the proper parameter
pair (p,d)?

Such systematic approaches do exist. We describe a
simple one here. Recall that the burstiness of the multifrac-
tal traffic increases with d when p is fixed, and decreases
with p when d is fixed. This property implies that if a speci-
fic parameter pair (pg,d,) fits some tail distribution of a
system under certain loading condition p = p,, then we
should also be able to find different parameter pairs (p,d),
with p > py, d > dy, or p < pg, d < d,, to provide simi-
larly good fit to the system-size tail distribution under that
particular loading condition. These different parameter pairs
would trace out a curve in the parameter plane. Since differ-
ent parameter pairs on this curve correspond to the same
degree of burstiness of a measured traffic (under the speci-
fied loading condition), we call such a curve equi-burstiness
parameter curve under the loading condition. If different
equi-burstiness parameter curves under different loading
conditions are very close together at certain parameter
pair values, then clearly our goal is achievable, with the
proper parameter pair values given by where the equi-bursti-
ness parameter curves are very close together.

Hence, the problem is reduced to whether an equi-bursti-
ness parameter curve exists for the network under a parti-
cular loading condition, and how can we find this curve if it
does exist. The first part of the question is easy to answer if
we note the following. The range of the burstiness of the
multifractal traffic is lower-bounded by the non-bursty traf-
fic characterized by the multiplier function P(r) =
o(r — 1/2)  (corresponding to the parameter pair
(p,d) = (1,0)), and upper-bounded by the most bursty traf-
fic characterized by the multiplier function being uniform
on the unit interval [0,1] (corresponding to the parameter
pair (p,d) = (0, 1/2)). If the burstiness of a measured traffic
belongs to this range, then we conclude there is at least one
parameter pair (p,d) to generate a multifractal traffic having
the same degree of burstiness as the measured traffic. This
then implies, by an earlier argument, that an equi-burstiness
parameter curve exists.

If an equi-burstiness parameter curve exists, then one has
two ways to find that curve. One can proceed by trial and
error, guided by the property that the burstiness of the multi-
fractal traffic increases with d when p is fixed, and decreases
with p when d is fixed. Alternatively, one can first simply
assume the mean of the multiplicative multifractal counting
process to be one unit. Then one can construct multifractal
counting processes parameterized by a series of different
pairs of (p,d), and use them to drive a queueing system to
obtain system-size tail probabilities under different utiliza-
tion levels. One then saves those system-size tail probabil-
ities corresponding to different parameter pairs (p,d) as a
data base. To find a desired parameter pair (p,d) for a
measured traffic trace data, one need simply to use the
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Fig. 14. System-size tail distributions for three loading conditions. The thick curves (symboled as diamonds) are obtained when the measured traffic trace data
pAug.TL is used to drive a queueing system. Other solid curves are obtained when the multiplicative multifractal traffic processes with parameter pair values
indicated as open circles, dark circles, and diamonds in Fig. 13 are used to drive the queueing system.

measured trace data to drive a queueing system to obtain the
system-size tail probabilities, and then compare them with
the data base. It should be obvious that when one has many
measured traffic trace data to model, the second method is
far superior.

We illustrate the above procedure by modeling the
Traffic B of the LAN traffic pAug.TL in some detail. We
choose p=0.3, 0.5, and 0.7 as representatives of low,
medium, and high loading conditions. Fig. 13 shows the
equi-burstiness parameter curves for the loading conditions
considered. Under these loading conditions, the system-size
tail distributions are shown in Fig. 14(a)—(c), where the
thick curves (symboled as diamonds) are obtained when
the measured traffic pAug.TL is used to drive the queueing
system. Other solid curves are obtained when the multipli-
cative multifractal traffic processes, with parameter pair
values indicated as open circles, solid circles, and diamonds

Log,oP(Queue length > x)

1 1 1

0 20 40 60 80 100 120
Queue length x (10% Packets)

Fig. 15. System-size tail probabilities obtained when WAN traffic Sample-
B (solid curves) and its corresponding multifractal traffic process (dashed
curves) are used to drive the queueing system. Three curves, from top to
bottom, correspond to p = 0.7, 0.5, and 0.3, respectively.

in Fig. 13, are used to drive the queueing system. We
observe that the multifractal traffic indeed has the same
degree of burstiness as the measured traffic under a specified
loading condition. We also observe that the equi-burstiness
parameter curves under different loading conditions are very
close together. This suggests that multiple good parameter
pairs (p,d) exist for the measured traffic pAug.TL. Recall
that the overall system-size tail distributions obtained when
the multifractal traffic is parameterized by (p,d)=
(0.66,0.27) have been shown in Fig. 12(a). Another simi-
larly good example is displayed in Fig. 12(b), where
(p,d) = (0.77,0.35) is used to generate the multiplicative
multifractal.

By the same procedure, we have found that multiple para-
meter pairs (p,d) also exist for other measured traffic
processes. For example, (p,d) = (0.81,0.27), for the
Traffic P of the LAN traffic pAug.TL; (p,d) =
(0.69, 0.45), for the Traffic B of WAN traffic Sample B;
(p,d) = (0.84,0.22), for the Traffic B of WWW traffic
S3p80; and (p,d) = (0.73,0.22), for the VBR video traffic.
A different set of good parameter pairs will be given later
when we discuss further on the characterization of the
burstiness of measured traffic.

Fig. 12(c) shows a comparison in the system-size tail
probabilities between queueing systems loaded by the
Traffic P of pAug.TL, and the multiplicative multifractal
traffic parameterized by (p,d) = (0.81,0.27). The solid
and dashed curves display the results obtained when
Traffic P of pAug.TL and its multiplicative multifractal
model are used to drive the queueing system. Three curves,
from top to bottom, correspond to utilization levels, p = 0.7,
0.5, and 0.3. Clearly, the queueing systems exhibit very
similar system-size tail distributions when loaded by the
measured traffic and the multiplicative multifractal traffic.

The burstiness of the Traffic B and Traffic P of pAug.TL
is indicated by the parameter pairs (p, d) = (0.66,0.27), and
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Fig. 16. System-size tail probabilities obtained when WWW traffic S3p80
(solid curves) and its corresponding multifractal traffic process (dashed
curves) are used to drive the queueing system. Three curves, from top to
bottom, correspond to p = 0.7, 0.5, and 0.3, respectively.

(0.81,0.27), respectively. According to the results shown in
Fig. 10, we see that Traffic B is more bursty than Traffic P.
This is consistent with the result shown in Fig. 4. Hence, our
multiplicative multifractal counting process model has
indeed overcome the inconsistency problem associated
with using the Hurst parameter to characterize the burstiness
of traffic, as studied in Section 2.

Comparisons in the system-size tail probabilities between
queueing systems loaded by the measured traffic Sample-B,
S3p80, and MPEG.data, and their corresponding multipli-
cative multifractal models are shown in Fig. 15-17, respec-
tively. The solid and dashed curves display the results
obtained when Traffic B of the measured traffic and their
corresponding multiplicative multifractal models are used
to drive the queueing system. Three curves, from top to
bottom, correspond to utilization levels, p = 0.7, 0.5, and
0.3. We observe that in all cases the queueing systems exhi-
bit very similar system-size tail distributions when loaded

Log,oP(Queue length > x)

0 50 100 150 200
x (Frames)

Fig. 17. System-size tail probabilities obtained when VBR video traffic
MPEG.data (solid curves) and its corresponding multifractal traffic process
(dashed curves) are used to drive the queueing system. Three curves, from
top to bottom, correspond to p = 0.7, 0.5, and 0.3, respectively.
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Fig. 18. Variation of the knee point, X", with the utilization level, p. Open
squares connected by dashed lines are obtained when the measured traffic,
WAN, LAN, WWW, and VBR video, is used to drive a queueing system.
Open triangles connected by dash—dot—dot—dot curve are computed from a
M/M/1 queueing system. Dark circles connected by solid lines are
computed from multiplicative multifractal traffic processes.

by the measured traffic and the multiplicative multifractal
traffic.

Note an interesting feature exhibited by Figs. 12, 15-17.
For not too low utilization levels, the system size tail prob-
abilities drop almost vertically after the buffer size exceeds a
certain size, X". We call this special point on the system size
tail probability curve the knee point. Knee points are of
crucial importance for engineering purposes, since they
characterize accurately the notion of burstiness of network
traffic, and are easily measurable.

Fig. 18 shows the variation of the knee point with the
utilization level. Points designated by open squares and
connected by dashed lines are obtained when the measured
traffic, WAN, LAN, WWW, and VBR video, are used to
drive a queueing system. Note that the burstiness of these
traffic processes decrease in the order WAN, LAN, WWW,
and VBR video. For comparison, the knee points for a
M/M/1 queueing system are also shown as open triangles
connected by dash—dot—dot—dot curve. Note that M/M/1
queueing system is the least bursty when compared to the
measured traffic processes.

As can be expected from the results shown in Figs. 12,
15-17, multiplicative multifractal traffic processes will give
very similar knee point curves as their corresponding
measured traffic processes. This is indeed so, as shown by
solid circles connected by solid curves in Fig. 18.

6. Conclusions

We analyze traffic flow traces taken from LANs, WANS,
and WWW. These traffic processes are described by their
interarrival-time and packet-size sequences. They have been
shown to exhibit LRD features. We show in this paper that
these traffic streams are well represented by counting
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process models. For this purpose, one must set the duration
used to collect the traffic count to be not larger than the
mean packet delay time. We also show that the burstiness
of these LRD counting processes cannot be effectively char-
acterized by the Hurst parameter. We then introduce a new
model, the multiplicative multifractal process, to character-
ize the counting traffic process. We develop a number of
properties exhibited by such processes. In particular, we
prove them to have LRD properties. We show that a burstier
multiplicative multifractal traffic process is associated with
a smaller value for the Hurst parameter. This is in sharp
contrast with the commonly held belief that a burstier
LRD traffic is often associated with a larger value for the
Hurst parameter. To simplify the modeling process, we
select a multiplicative multifractal model that employs
one or two basic parameters. We show that this model has
well defined burstiness descriptors, and is easy to construct.
We consider a single server queueing system that is loaded,
on one hand, by the measured LAN, WAN, WWW, and
VBR video traffic processes, and, on the other hand, by
the corresponding properly parameterized multifractal
processes. In comparing the system-size tail distributions,
we demonstrate our model to effectively track the behavior
exhibited by the system driven by the actual traffic
processes. By using the parameters mentioned above, this
model can be calibrated to fit the different types of network
traffic processes studied here. We also describe a systematic
approach for the selection of these parameters.

Our finding concerning the inefficiency of the Hurst para-
meter (in characterizing the burstiness of LRD traffic
processes) sheds light on a modeling approach for VBR
video traffic. The LRD features included in the measured
video traffic stream do not imply that the measured traffic
flow cannot be described by Markovian models. Indeed, we
have found that among the four types of measured LRD
traffic processes studied here (namely, LAN, WAN,
WWW, and video traffic), the video traffic is the least bursty
among all. LRD traffic models such as the multiplicative
multifractal processes presented here provide another
simple and effective alternative. This is especially so
when one wishes the model to contain as few parameters
as possible. (An even simpler multifractal model, which
contains a single parameter, can be found in [7].)
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