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Abstract

Understanding neuronal firing patterns is one of the most important problems in theoretical neuroscience. It is also very
important for clinical neurosurgery. In this Letter, we introduce a computational procedure to examine whether neuronal firing
recordings could be characterized by cascade multiplicative multifractals. By analyzing raw recording data as well as generated
spike train data from 3 patients collected in two brain areas, the globus pallidus externa (GPe) and the globus pallidus interna
(GPi), we show that the neural firings are consistent with a multifractal process over certain time scalg rap)geherer; is
argued to be not smaller than the mean inter-spike-interval of neuronal firings,/whikey be related to the time that neuronal
signals propagate in the major neural branching structures pertinent to GPi and GPe. The generalized dimensiorDgpectrum
effectively differentiates the two brain areas, both intra- and inter-patients. For distinguishing between GPe and GPi, it is further
shown that the cascade model is more effective than the methods recently examined by Schiff et al. as well as the Fano factor
analysis. Therefore, the methodology may be useful in developing computer aided tools to help clinicians perform precision
neurosurgery in the operating room.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction ber of firings in a chosen time window. In the past
few decades, a lot of effort has been dedicated to the
Events in extracellular neuronal recording generate analysis of these two types of time series, by using
two types of time series: (1) the time interval between fractal theory to characterize how firing data is dif-
successive firings, called the inter-spike-interval (I1SI) ferent from Poisson-based models, to quantify long-
data; (2) a counting process, representing the num-range-correlations, and to characterize the neuronal
dynamics[1-22]. Much new insights into the func-
tional importance of multiscale spike train variabilities
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ferent type of fractal process, called a multiplicative motivates us to examine whether more advanced sig-
cascade multifractal, for the analysis of neuronal fir- nal processing tools, such as those based on multifrac-
ing patterns. tal theory, may help us achieve this goal better.

Neuronal firing patterns are also important in clin- The remaining of the Letter is organized as follows.
ical neurosurgery. Advances in surgical treatment of We briefly describe the data in Sectidnn Section3,
Parkinson disease have stimulated much interest in thewe first overview measure based multifractal theory,
research of deep brain stimulation (DBS). The globus and then briefly describe multiplicative cascade multi-
pallidus (GP) has been targeted in neurosurgical treat- fractals. In Sectior, we first describe a procedure to
ment of Parkinson disease and dystonia. The GP is acarry out multifractal analysis on experimental data,
complex structure in the basal ganglia and can be di- then we present a detailed analysis on human deep
vided into two parts: the globus pallidus externa (GPe) brain recording data as well as generated spike train
and the globus pallidus interna (GPi). Both receive in- data, and show that the neuronal activity data exhibits
put from the caudate and putamen and communicate stochastic features that are consistent with the multi-
with the subthalamic nucleus. The GPi is thought to plicative cascade multifractal model. In particular, we
send the major inhibitory output from the basal ganglia show that the model appears to be able to distinguish
back to thalamus, and also to send a few projections GPe from GPi based on neuronal firing data analysis.
to an area of midbrain (the PPPA), presumably to as- For comparison purpose, we also study the data using
sist postural control. Distinguishing GPe from GPi is Fano factor analysis and the methods recently exam-
very important for surgical treatment of Parkinson dis- ined by Schiff et al[28]. We summarize our findings
easq23]. in the final section.

In his pioneering work, DeLonfpP4] observed that
discharge patterns of neurons in the GPi and GPe in
awake monkeyNlacacca Mulatt at rest appeared to 2. Data
be very different. For GPe neurons, two types of firing
patterns were observed: one had recurrent periods of We have obtained sequences of the neural activity
high-frequency discharge with relatively silent periods from GPi and GPe of 3 patients, sampled at 20 kHz.
in between, and the other had a low-frequency dis- The measured voltage recording data for three patients
charge with bursts. In contrast, only one firing pattern are shown irFig. 1 In this Letter, we analyze both raw
was found for GPi neurons: a continuously discharge voltage recording data as well as spike train data. To
without long periods of silence. DeLong’s work makes appreciate the data better, a small representative seg-
one wonder whether different cell types in specific ment is shown irFig. 2 We observe two time scales:
brain regions can be characterized and identified by (i) the inter-spike-interval (ISI), which on average is
their firing patterns, so that the accuracy in the tar- about 0.01 s (i.e., around 200 sampled points) for both
get acquisition of stereotactic electrode placement in GPi and GPe; (ii) a smaller time scale defining each
the human brain can be automated with high accu- spike, which contains around 16 sampled points. For
racy. Indeed, a lot of work has been done since then time scales below the average ISI, neural activity sig-
[25-30] However, recently it was reported that tradi- nals cannot be fractals; therefore, we expect that frac-
tional signal processing of single-unit neuronal activ- tal analysis of neuronal firing patterns should involve
ity may fail to differentiate GPe and GPi in Parkinson time scales larger than the two time scales discussed
diseasg28]. However, the negative result [#8] does above. This is indeed the case, as will be pointed out
not imply that single-unit neuronal activity recordings explicitly later.
do not contain enough information for us to differenti- The method we adopt for spike-detect is similar to
ate between GPe and GPi, because in practice, a wellthat used by Schiff et a[28]. The method contains
trained experienced movement disorders specialist is 3 thresholds and consists of 3 steps: (1) starting from
able to do so by listening to neuronal activity over the center line (i.e., zero voltage), a threshold is used
a loudspeaker through trial and error. The success of to identify a candidate spike peak; (2) starting from the
movement disorders specialist and the importance of identified candidate peak, a second threshold is used to
differentiating GPe and GPi in clinical neurosurgery identify a valley; (3) a slope is defined by connecting
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Fig. 1. Human deep brain recordings from GPe and GPi.
Table 1
ISl SNR of recording data of 3 patients
Data Patient 1 Patient 2 Patient 3
] GPi GPe GPi GPe GPi GPe
SNR 18.3 22.0 13.2 115 14.9 125
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Fig. 2. Detailed neural discharge data.

identified spike peaks, and is the standard devia-
tion of the background noise. The latter is computed
by first removing the identified spikes from the volt-
age data. The result is shownTable 1 We observe
that the SNR for the data of patient 1 is the highest.
This is consistent with our earlier observation.

Finally, we note that the maximum ISl for GPi is
about 0.06 s, and about 0.40 s for GPe. This suggests
that neuronal firing in GPe may be more intermittent

the identified peak and valley. If the slope exceeds a than that in GPi, which is consistent with DeLong’s
third threshold, the identified spike is declared as a true OPservation.

spike.

From Fig. 1, we can see that the data sets of pa-
tient 1 are “cleaner” than data sets of other two pa-
tients. To quantify this visual perception, we define
signal to noise ratio (SNR) by the formula SNR
20 Ioglo(g), where A is the mean amplitude of the

3. Multiplicative cascade multifractals

The concept of multifractal is mostly developed
for understanding the intermittent features of turbu-
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lence[31]. Intuitively, intermittency can be considered
a combination of burstiness and the variation of the
burstiness over time. In this section, we first overview
the definition of measure based multifractals. This
type of multifractals is typically constructed through
multiplicative processes. In the following, we define

multiplicative processes and present examples of such

models.
3.1. Definition

Consider the unit interval, associate it with a unit
mass, and patrtition the unit interval into a series of
small intervals with linear length. Partition the unit
mass into a series of weights or probabilities f, and
associatew; with the ith interval. Now consider the
moments

My(e)=> w],

whereq is real. Note the convention that whenewugr

is zero, the termul’? is dropped. We also note that
a positiveqg value emphasizes large weights, while
a negativeg value emphasizes small weights. If we
have, for a real function(g) of g,

My(e) ~e™ @, (2

for every g, and the weights #;} are non-uniform,
then the weightsu; (¢) are said to form a multifractal
measure. Note that the normalizatidn, w; = 1 im-
plies thatr (1) = 0.

Note that if {w;} are uniform, thenz(q) is linear
in ¢g. When {w;} are weakly non-uniform, visually
7(g) may still be approximately linear ig. The non-
uniformity in {w;} is better characterized by the so-
called generalized dimensiok, defined ag32]

T(q)
171 ()
D, is a monotonically decreasing function @f33].
It exhibits a non-trivial dependence anwhen the
weights {w;} are non-uniform. We will use this prop-
erty to distinguish the activity from two types of deep
brain structures, the GPe and GPi.

@)

ase — 0,

3.2. Construction of multiplicative multifractals

To better appreciate the construction rules, we point
out that they essentially involve dyadic partitions.
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Fig. 3. Schematic illustrating the construction rule of a multiplica-
tive multifractal.

Consider a unit interval again and associate it with
a unit mass. Divide the unit interval into two, say, left
and right segments of equal length. Also partition the
associated mass into two fractiongnd 1-r, and as-
sign them to the left and right segments, respectively.
The parameter is in general a random variable, gov-
erned by a probability density function (pdB(r),
0 < r < 1. The fractiorr is called the multiplier. Each
new subinterval and its associated weight are further
divided into two parts following the same rule. This
procedure is schematically shownFkig. 3, where the
multiplier  is written as;;, with i indicating the stage
number, ang (assuming only odd numbers thus leav-
ing even numbers for % r;;) indicating the positions
of a weight on that stage. Note the scale (i.e., the inter-
val length) associated with stagés 2. We assume
that P (r) is symmetric about = 1/2, and has succes-
sive momentsiy, 2, ... . Hencer;; and 1—r;; both
have marginal distributiorP (r). The weights at the
stageN {w,,n=1,...,2N}, can be expressed as

Wp =UU2---UN,

whereu;, I =1,..., N, are eithew;; or 1—r;;, thus,
{u;,i > 1} are independent identically distributed ran-
dom variables having pd? (r). One can readily prove
that such a model generates multifrac{8]. To bet-

ter appreciate the model and to develop a general
analysis procedure, in the following, we illustrate this
process by selecting a specific pelfr).

Deterministic binomial multiplicative process
In this case, the pdf is set to be equal Rgr) =
8(r — p), whered(x) is the Kronecker delta function.



Y. Zheng et al. / Physics Letters A 344 (2005) 253-264 257

Stage

S T B A E N e I

—_—

: " ip(1-p) p(1-pPip(1-pfi (1-D)
3 b p1-p) 1) PP gy P-PTippF P

Fig. 4. A schematic showing the weights at the first several stages of

the binomial multiplicative process & p w.p. 1).

Thus,r = p with probability 1, where < p < lisa
fixed number. The weights obtained for the first sev-
eral stages are schematically showrrig. 4.

For this process, at stagewe have

n
My(e) =) C,p™ (1= p)?""
i=0

=[p*+a-pr]" (@)

Since at stage, e = 27", we obtain

t(@) =—In[p? + (1 - p)?]/In2, (5)

which is independent ot (or €). Hence, this weight
process constitutes a multifracfab,36]

Random binomial multiplicative process

To make the weight series random, we can se-
lect the functionP (r) in any functional form[33], as
long asP(r) is symmetric about = 1/2. One of the
simplest cases is the random binomial multiplicative
process, wheré (r) is given by

P(r)=[8(r—p)+5(r— Q- p)]/2 (6)

It is quite obvious that the (¢) spectrum for this
process is identical to that for the deterministic bi-

4. Analysisof experimental data

In this section, we apply multiplicative multifractal
analysis to human deep brain recording data as well as
generated spike train data. We show that human deep
brain neuronal activity data exhibit stochastic features
that are consistent with the stochastic behavior of ran-
dom multiplicative processes over certain time scales,
and these features can be used to distinguish neurons
from GPe and GPi. For comparison purpose, we also
study the data using Fano factor analysis and the meth-
ods recently proposed by Schiff et [28].

4.1. Multiplicative multifractal analysis of raw
recording data

In order to show that the data recorded in differ-
ent brain areas are realizations of certain multiplica-
tive processes, momenig, (¢) are computed at dif-
ferent stages, and E@2) is checked for validity in
certain ¢ ranges. In the following, we describe in
detail a general procedure for obtaining weight se-
quences at different stages needed for computing the
momentsi,, ().

Assume we use’? consecutive raw recording volt-
age data. For ease of illustration, we denote this orig-
inal time series as¥;}; and the square of raw data,
{V3, by { X;}. We view {X;,i =1,...,2"} as the
weight series of a certain multiplicative process at
stageN. Note that the total WeighEiZZ1 X; is set
equal to 1 unit. Also note the scale associated with
stageN is € = 27V, This is the smallest time scale
resolvable by the measured human deep brain record-
ing data.

Given the weight sequence at stagé (which
represents the measured data), the weights at stage
N-1, {Xl.(zl), i=1,...,2N"1} is obtained by simply
adding the consecutive weights at stageover non-
overlapping blocks of size 2, i.eX,,.(zl) = Xoi_1+ X2,
for i = 1,...,2N~1, where the superscript!2for

Xl.(zl) is used to indicate that the block size used
for the involved summation at stagé — 1 is 2.

This follows directly from the construction of a
multiplicative multifractal process, as schematized

nomial process, since the weight sequence for thisin Fig. 3. Associated with this stage is the scale

process is simply a shuffled version of the determin-
istic case.

e = 2-N=D_ This procedure is carried out recur-
sively. That is, given the weights at stage+ 1,
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Stage

N-3 X+ X5+ X3+X ,+ Xs+X o+ X+ X
N-2 X+ XL+ XX, X+ X+ X5+ X5
N-1 X X, X,+X, X+Xy X,+X5
N X, X, X; X, X5 X, X, X
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To further check whether these data sets are truly
multifractals, we computeD, for certaine range.
Here we focus on the time scale range from stage 9
to stage 4, corresponding to time scales from about
11 = 0.01 to 1o = 0.40 s (more precisely,’2-° and
217-4 sampled points, with a sampling frequency
of 20 kHz). The results are shown iRig. 7. In-
deed we observe that in all casés, has a non-

Fig. 5. A schematic showing the weights at the last several stages trivial dependence ory. Therefore, we conclude

for the analysis procedure described in the text. It is instructive to
compare this figure witkrig. 3 where it was shown that a weight at
stagei is the sum of the two “daughter” weights at stages1.

{X}ZNf"'fl),i =1,...,
. @N-iy . ; .

at stagej, {X; ,i=1...,2/}, by adding con-

secutive weights at stage+ 1 over non-overlapping

blocks of size 2, i.e.,

2/+1) we obtain the weights

2N /) 2 —j—- l)

—i—1

X270 2 x¢ X&), )

for i = 1,...,2/. Here the superscript ™2/ for
o

Xi(2 ") is used to indicate that the weights at stgge

can be equivalently obtained by adding consecutive
weights at stageV over non-overlapping blocks of
size Y=/, Associated with stagg is the scales =

that these time series are consistent with multifrac-
tals.

More interestingly, theD, spectrum shows clearly
the difference between the neuronal firings in GPe and
GPi. This is evident fronfig. 7 where we observe
that there is a clear separation between the values of
D, at very negative values af (say,q = —30) for
GPi and GPeD, ~ 1.4 for GPi and~ 1.2 for GPe).
This result can be understood readily. The small inter-
vals with smaller weight will dominate the moments
of M, whengq is very negative. For time scales just
exceeding the mean ISI, which corresponding to about
e = 28 points, some intervals may not contain any neu-
ronal firing and thus will weigh a lot more for very
negativeg. As noted before, for GPi, the discharge
is fairly uniform, while for GPe, the firings are more
bursty and intermittent, and hence may result in many

277. This procedure stops at stage 0, where we have |ong time intervals without any firing. As a conse-

a single unit welghtz lX,, ande = 2°. The latter

quence, for very negativg M, for GPe decays slower

is the largest time scale associated with the measuredthan that for GPi, and hence, a smallgy. There-

neural datakig. 5schematically shows this procedure.
After we have obtained all the weights from stages
0 to N, we compute the moment¥, (¢) according
to Eq. (1) for different values ofg. We then plot
logM, (¢) vs. loge for different values of. If these
curves are linear over a wide range efthen these
weights are consistent with a multifractal measure.
Note that, according to E¢2), the slopes of the linear
part of logM, (¢) vs. loge curves provide an estimate
of 7(g), for different values of.
We illustrate the above procedure by usidg €on-

secutive data points of each data set for this analysis,

fore, the D, spectrum provides an interesting means
of quantifying the structures of ISI as well as the dif-
ferences between the firing patterns of the neurons in
GPe and GPi.

We emphasize that based on our analysis of three
patients’ data, the separation between GPe and GPi
based on theD,, ¢ < 0, curves holds not only for
the same patient, but also across patients. The val-
ues of D, were consistent among the three patients
which settled to~ 1.4 for GPi and~ 1.2 for GPe.
This result warrants a more rigorous study involv-
ing a much larger patient population to verify these

which is around 6.5 seconds. To assess the degree otrends.

linearity we plot inFig. 61og, M, (¢) vs. —log, € for
voltage data recorded from GPi and GPe of all three
patients. We observe that the scaling betwagyte)
ande (i.e., the degree of linearity between oy, (¢)
and—log, ¢) for all data sets are quite good up to the
9th stage.

4.2. Multiplicative multifractal analysis of spike train
data

We now apply the multiplicative multifractal analy-
sis to the spike train data. To do so, we represent the
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Fig. 8. The generalized dimension spectrum for spike train data of GPi and GPe area of 3 patients. The spike trains are obtained under one sef

of threshold values.

with a set of smaller threshold values. However, when
the data is very noisy, the sequence of spikes detected
arbitrarily setX; = 0.001 when there is no spike at can be drastically modified by the threshold values. As
the positioni. After obtaining such a time series, we a result, theD, curves shift upward, sometimes quite
then apply the general analysis procedure discussedsignificantly, when the threshold values used for de-
above to obtain the generalized dimension spectrum tecting the spikes are reduced. This can be clearly seen
D,. Very interestingly, the time scale region defining by comparingFig. X(d), (e) withFig. §d), (e). While
the fractal scaling here is the same as that identified Fig. 8 indicates that the multifractal model becomes
earlier, i.e., fromy; = 0.01 to about, = 0.4 s.Fig. 8 more effective in differentiating GPe from GPi when
shows the result for the spike train data under one employed to analyze spike dafég. 9 says the oppo-
set of threshold values used for obtaining the spikes. site.
Comparing withFig. 7, we observe that the differences Our results can be understood readily. When the
between theD,, ¢ < 0, curves, for GPe and GPi be- data is clean, spike detection effectively suppresses
come even larger for the spike train data than for the noise. Consequently, the multifractal model becomes
raw data, especially for the data of patient 1, which is more effective in distinguishing between GPe and GPi.
cleanest. However, when data is not very clean, spike detec-
We have further examined how sensitively the re- tion both suppresses and introduces noise. The former
sult of Fig. 8depends on the threshold values used for comes from the fact that noise between spikes has been
spike detection. We have found that when the data is completely removed, while the latter is due to the fact
clean, the sequence of the spikes detected is largelythat spike detection may miss some true spikes while
independent of the threshold values. So are Ihe introduce some false spikes. As a result, the multifrac-
curves. This is evident by comparirgg. 9c) with tal approach could become less effective when distin-
Fig. §c), where the spike train fdfig. 9(c) is obtained guishing GPe from GPi.

spike train data by the following: we s&; = 1 when
there is a spike at the positian and more or less
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Fig. 9. The generalized dimension spectrum for spike train data of GPi and GPe area of 3 patients. The spike trains are obtained with threshold
values that are smaller than those useBim 8.

4.3. Comparison with other methods Table 2
Comparison of mean firing frequency (Hz), bursts (percentage of ISI

In this subsection, we examine effectiveness of the <8 ms), and average power from raw data of 3 patients

methods studied if28] as well as the Fano factor Measurement Patient 1 Patient 2 Patient 3
analysis in differentiating GPe from GPi. GPi GPe GPi GPe GPi  GPe
Schiff et al. [28] examined the effectiveness of  Mean freq. 95 71 101 51 139 135

three simple measures for the analysis of single-unit Bursts (percent) 38 449 537 352 697 687
neuronal recording to differentiate the GPi from GPe Averagepower 4 53 40 16 53 19
in Parkinson disease. The three measures are: (i) the
mean firing frequency, which is simply the average i ) o .
spike firing rate; (i) the burst firing ratio of spikes, WhereN:(T) is the number of spikes in thiéh window
which is defined as the percentage of ISIs that are ©f durationT'. For a Poisson procesB(T) is 1, inde-
shorter than 8 ms; and (iii) total average power of raw Pendent off’. For a fractal process; (T) not only de-
data, which is obtained by first computing the power Pends or’, butzt[f}elcjependenge takes on a power-law
spectrum within all 0.2048-second windows, and then form: £(T) ~ T="~=, whereH is called the Hurst pa-
getting the averagdlable 2lists our results. We ob- ~ fameter (or Holder exponerft), 7]. Such a scaling can
serve that none of the measures works at all in dis- P€ readily understood, if one notices that for a fractal
tinguishing between GPe and GPi, just as reported by Process such aéifractlonal Brownian motion process,
Schiff et al.[28]. Var[N; (T)] ~ T [37].

Next we analyze neural firing activities by employ- N Fig. 10 we plot the F(T) vs. T curves for all

ing Fano factor analysis. The Fano factor is defined as data sets in log-log scale. For short counting time
(T — 0), the Fano factors approach unity, because
Var[N; (T)]

F(T) = ’ ®) there is only zero or one spike in an arbitrarily short
Mear{ N; (T)] counting window and sidca 0 and 1 counting se-
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Fig. 10. log(F(T)) vs. log (T )for spike train data of GPi and GPe area of 3 patients. The spikes are the same as thos€igséd in

quence of spikes is a sequence of Bernoulli random patients. In so far as distinguishing GPe and GPi is
variableg7]. WhenT > 28, which is equivalentto the  concerned, it is found that the multifractal model is
mean of the ISI, for each patient, tH§T) curve for more effective than both conventional methods re-
GPe is higher than that for GPi. Therefore, the Fano cently examined by Schiff et a[28] as well as the
factor appears to be able to distinguish GPe from GPi Fano factor analysis. It is interesting to note that, by
for individual patient, although not as effective as the trial and error, a well trained experienced motion dis-
multifractal model. orders specialist could discriminate the two brain areas

We would like to mention that we have also tried in seconds to half minute. Therefore, the multifractal
Fano factor analysis on the raw recording data. We are method may be very useful in helping develop quan-
not able to identify any meaningful fractal scaling re- titative methods to advise clinicians during precision
gion, let alone to distinguish GPe from GPi. neurosurgery in the operating room.

We have found that applying the multifractal analy-
sis directly on the raw neural discharge data appears
to be very effective in differentiating GPe and GPi,
regardless of the degree of noise level in the data.

We have introduced a computational procedure to This is because the analysis has built in it a simple
examine whether neuronal firing data could be char- mechanism—summation—to greatly suppress noise
acterized by cascade multiplicative multifractals. By in the raw signals. This attribute is very appealing
studying short time series of duratiorb&, from 3 pa- noticing that spike detection and sorting can be ex-
tients recorded in two brain structures, GPe and GPi, tremely complicated if the raw recording data is very
we have shown that the data are consistent with suchnoisy. Of course, if the raw recording data is very
multifractals over certain time scale range, and that the clean, then it would be better to perform spike detec-
generalized dimension spectrum, accurately dif- tion first, to further reduce noise, before one employs
ferentiates the two brain areas, both intra- and inter- the multiplicative multifractal analysis.

5. Discussion
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In our data sets we found that there are three time structures. These might explain why only the interme-
scales. One is the small time scale below the mean diate time scale is useful for discriminating between
ISI of about 0.01 s. We have pointed out in Sectton  GPe and GPi.
that on time scales smaller than the mean ISI, there  Our proposed methodology produced a consistently
is only noise and individual spikes, hence, fractal be- quantifiable difference in the time-series recording be-
havior should not be expected. We have also observedtween GPe and GPi within and across patients. Our
that, although the scaling behavior for the first 4 stages ultimate goal is to develop an intra-operative advis-
(corresponding to time scales of about 0.4 to 3 s) ing system that generalizes to a much larger patient
are consistent with a multifractal structure, they are population and could be used to speedily and accu-
not useful for the purpose of distinguishing between rately confirm DBS targets. This approach could im-
GPe and GPi. The time scale between 0.01 and 0.4 sprove the success of DBS cases by decreasing intra-
is the one that contains the discriminating power for operative time, improving targeting, and easing the
our goal. We have analyzed time series that are much burden of classification by the movement disorder spe-
longer than %7 points, and observed similar behavior. cialist. However, these results are simply a proof of
Therefore, we have good reason to believe that distin- concept and additional studies are necessary to con-
guishing GPe from GPi may no longer be possible for firm whether the observed multifractal trends are uni-
time scales beyond 0.4 s. This may reflect properties of versal.
the physiological mechanisms that generate the data.

The notion of time scales can help us understand
why some conventional measures are not effective in References
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