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Abstract

Understanding neuronal firing patterns is one of the most important problems in theoretical neuroscience. It is a
important for clinical neurosurgery. In this Letter, we introduce a computational procedure to examine whether neuron
recordings could be characterized by cascade multiplicative multifractals. By analyzing raw recording data as well as g
spike train data from 3 patients collected in two brain areas, the globus pallidus externa (GPe) and the globus pallidu
(GPi), we show that the neural firings are consistent with a multifractal process over certain time scale range(t1, t2), wheret1 is
argued to be not smaller than the mean inter-spike-interval of neuronal firings, whilet2 may be related to the time that neuron
signals propagate in the major neural branching structures pertinent to GPi and GPe. The generalized dimension speDq

effectively differentiates the two brain areas, both intra- and inter-patients. For distinguishing between GPe and GPi, it
shown that the cascade model is more effective than the methods recently examined by Schiff et al. as well as the F
analysis. Therefore, the methodology may be useful in developing computer aided tools to help clinicians perform p
neurosurgery in the operating room.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Events in extracellular neuronal recording gener
two types of time series: (1) the time interval betwe
successive firings, called the inter-spike-interval (I
data; (2) a counting process, representing the n
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ber of firings in a chosen time window. In the pa
few decades, a lot of effort has been dedicated to
analysis of these two types of time series, by us
fractal theory to characterize how firing data is d
ferent from Poisson-based models, to quantify lo
range-correlations, and to characterize the neur
dynamics[1–22]. Much new insights into the func
tional importance of multiscale spike train variabiliti
have been gained. In this Letter, we introduce a
.
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ferent type of fractal process, called a multiplicat
cascade multifractal, for the analysis of neuronal
ing patterns.

Neuronal firing patterns are also important in cl
ical neurosurgery. Advances in surgical treatmen
Parkinson disease have stimulated much interest in
research of deep brain stimulation (DBS). The glo
pallidus (GP) has been targeted in neurosurgical tr
ment of Parkinson disease and dystonia. The GP
complex structure in the basal ganglia and can be
vided into two parts: the globus pallidus externa (G
and the globus pallidus interna (GPi). Both receive
put from the caudate and putamen and communi
with the subthalamic nucleus. The GPi is thought
send the major inhibitory output from the basal gang
back to thalamus, and also to send a few projecti
to an area of midbrain (the PPPA), presumably to
sist postural control. Distinguishing GPe from GPi
very important for surgical treatment of Parkinson d
ease[23].

In his pioneering work, DeLong[24] observed tha
discharge patterns of neurons in the GPi and GP
awake monkey (Macacca Mulatta) at rest appeared t
be very different. For GPe neurons, two types of fir
patterns were observed: one had recurrent period
high-frequency discharge with relatively silent perio
in between, and the other had a low-frequency d
charge with bursts. In contrast, only one firing patt
was found for GPi neurons: a continuously discha
without long periods of silence. DeLong’s work mak
one wonder whether different cell types in spec
brain regions can be characterized and identified
their firing patterns, so that the accuracy in the
get acquisition of stereotactic electrode placemen
the human brain can be automated with high ac
racy. Indeed, a lot of work has been done since t
[25–30]. However, recently it was reported that tra
tional signal processing of single-unit neuronal ac
ity may fail to differentiate GPe and GPi in Parkins
disease[28]. However, the negative result of[28] does
not imply that single-unit neuronal activity recordin
do not contain enough information for us to differen
ate between GPe and GPi, because in practice, a
trained experienced movement disorders speciali
able to do so by listening to neuronal activity ov
a loudspeaker through trial and error. The succes
movement disorders specialist and the importanc
differentiating GPe and GPi in clinical neurosurge
l

motivates us to examine whether more advanced
nal processing tools, such as those based on multi
tal theory, may help us achieve this goal better.

The remaining of the Letter is organized as follow
We briefly describe the data in Section2. In Section3,
we first overview measure based multifractal theo
and then briefly describe multiplicative cascade mu
fractals. In Section4, we first describe a procedure
carry out multifractal analysis on experimental da
then we present a detailed analysis on human d
brain recording data as well as generated spike t
data, and show that the neuronal activity data exhi
stochastic features that are consistent with the m
plicative cascade multifractal model. In particular,
show that the model appears to be able to disting
GPe from GPi based on neuronal firing data analy
For comparison purpose, we also study the data u
Fano factor analysis and the methods recently ex
ined by Schiff et al.[28]. We summarize our finding
in the final section.

2. Data

We have obtained sequences of the neural act
from GPi and GPe of 3 patients, sampled at 20 k
The measured voltage recording data for three pati
are shown inFig. 1. In this Letter, we analyze both ra
voltage recording data as well as spike train data
appreciate the data better, a small representative
ment is shown inFig. 2. We observe two time scale
(i) the inter-spike-interval (ISI), which on average
about 0.01 s (i.e., around 200 sampled points) for b
GPi and GPe; (ii) a smaller time scale defining ea
spike, which contains around 16 sampled points.
time scales below the average ISI, neural activity s
nals cannot be fractals; therefore, we expect that f
tal analysis of neuronal firing patterns should invo
time scales larger than the two time scales discus
above. This is indeed the case, as will be pointed
explicitly later.

The method we adopt for spike-detect is similar
that used by Schiff et al.[28]. The method contain
3 thresholds and consists of 3 steps: (1) starting f
the center line (i.e., zero voltage), a threshold is u
to identify a candidate spike peak; (2) starting from
identified candidate peak, a second threshold is use
identify a valley; (3) a slope is defined by connecti
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Fig. 1. Human deep brain recordings from GPe and GPi.
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Fig. 2. Detailed neural discharge data.

the identified peak and valley. If the slope exceed
third threshold, the identified spike is declared as a
spike.

From Fig. 1, we can see that the data sets of
tient 1 are “cleaner” than data sets of other two
tients. To quantify this visual perception, we defi
signal to noise ratio (SNR) by the formula SNR=
20 log (A), whereA is the mean amplitude of th
10 σ
Table 1
SNR of recording data of 3 patients

Data Patient 1 Patient 2 Patient 3

GPi GPe GPi GPe GPi GP

SNR 18.3 22.0 13.2 11.5 14.9 12

identified spike peaks, andσ is the standard devia
tion of the background noise. The latter is compu
by first removing the identified spikes from the vo
age data. The result is shown inTable 1. We observe
that the SNR for the data of patient 1 is the highe
This is consistent with our earlier observation.

Finally, we note that the maximum ISI for GPi
about 0.06 s, and about 0.40 s for GPe. This sugg
that neuronal firing in GPe may be more intermitte
than that in GPi, which is consistent with DeLong
observation.

3. Multiplicative cascade multifractals

The concept of multifractal is mostly develop
for understanding the intermittent features of turb
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lence[31]. Intuitively, intermittency can be considere
a combination of burstiness and the variation of
burstiness over time. In this section, we first overvi
the definition of measure based multifractals. T
type of multifractals is typically constructed throug
multiplicative processes. In the following, we defi
multiplicative processes and present examples of s
models.

3.1. Definition

Consider the unit interval, associate it with a u
mass, and partition the unit interval into a series
small intervals with linear lengthε. Partition the unit
mass into a series of weights or probabilities {wi }, and
associatewi with the ith interval. Now consider the
moments

(1)Mq(ε) =
∑

i

w
q
i ,

whereq is real. Note the convention that wheneverwi

is zero, the termw
q
i is dropped. We also note th

a positiveq value emphasizes large weights, wh
a negativeq value emphasizes small weights. If w
have, for a real functionτ(q) of q,

(2)Mq(ε) ∼ ετ(q), asε → 0,

for every q, and the weights {wi } are non-uniform,
then the weightswi(ε) are said to form a multifracta
measure. Note that the normalization

∑
i wi = 1 im-

plies thatτ(1) = 0.
Note that if {wi } are uniform, thenτ(q) is linear

in q. When {wi } are weakly non-uniform, visually
τ(q) may still be approximately linear inq. The non-
uniformity in {wi } is better characterized by the s
called generalized dimensionsDq defined as[32]

(3)Dq = τ(q)

q − 1
.

Dq is a monotonically decreasing function ofq [33].
It exhibits a non-trivial dependence onq when the
weights {wi } are non-uniform. We will use this prop
erty to distinguish the activity from two types of de
brain structures, the GPe and GPi.

3.2. Construction of multiplicative multifractals

To better appreciate the construction rules, we p
out that they essentially involve dyadic partitions.
Fig. 3. Schematic illustrating the construction rule of a multiplic
tive multifractal.

Consider a unit interval again and associate it w
a unit mass. Divide the unit interval into two, say, le
and right segments of equal length. Also partition
associated mass into two fractions,r and 1− r , and as-
sign them to the left and right segments, respectiv
The parameterr is in general a random variable, go
erned by a probability density function (pdf)P(r),
0� r � 1. The fractionr is called the multiplier. Each
new subinterval and its associated weight are fur
divided into two parts following the same rule. Th
procedure is schematically shown inFig. 3, where the
multiplier r is written asrij , with i indicating the stage
number, andj (assuming only odd numbers thus lea
ing even numbers for 1− rij ) indicating the positions
of a weight on that stage. Note the scale (i.e., the in
val length) associated with stagei is 2−i . We assume
thatP(r) is symmetric aboutr = 1/2, and has succes
sive momentsµ1,µ2, . . . . Hencerij and 1− rij both
have marginal distributionP(r). The weights at the
stageN {wn,n = 1, . . . ,2N }, can be expressed as

wn = u1u2 · · ·uN,

whereul , l = 1, . . . ,N , are eitherrij or 1− rij , thus,
{ ui, i � 1} are independent identically distributed ra
dom variables having pdfP(r). One can readily prove
that such a model generates multifractals[34]. To bet-
ter appreciate the model and to develop a gen
analysis procedure, in the following, we illustrate th
process by selecting a specific pdfP(r).

Deterministic binomial multiplicative process
In this case, the pdf is set to be equal toP(r) =

δ(r − p), whereδ(x) is the Kronecker delta function



Y. Zheng et al. / Physics Letters A 344 (2005) 253–264 257

es of

ev-

t

se-

ive

bi-
this
in-

l
ll as
eep
res
an-
les,
rons
lso
eth-

er-
ca-
-

in
se-
the

t-
rig-
,

at

ith
le
ord-

tage

ed

a
ed
le
r-
Fig. 4. A schematic showing the weights at the first several stag
the binomial multiplicative process (r = p w.p. 1).

Thus,r = p with probability 1, where 0< p < 1 is a
fixed number. The weights obtained for the first s
eral stages are schematically shown inFig. 4.

For this process, at stagen, we have

Mq(ε) =
n∑

i=0

Ci
np

qi(1− p)q(n−i)

(4)= [
pq + (1− p)q

]n
.

Since at stagen, ε = 2−n, we obtain

(5)τ(q) = − ln
[
pq + (1− p)q

]
/ ln2,

which is independent ofn (or ε). Hence, this weigh
process constitutes a multifractal[35,36].

Random binomial multiplicative process
To make the weight series random, we can

lect the functionP(r) in any functional form[33], as
long asP(r) is symmetric aboutr = 1/2. One of the
simplest cases is the random binomial multiplicat
process, whereP(r) is given by

(6)P(r) = [
δ(r − p) + δ

(
r − (1− p)

)]
/2.

It is quite obvious that theτ(q) spectrum for this
process is identical to that for the deterministic
nomial process, since the weight sequence for
process is simply a shuffled version of the determ
istic case.
4. Analysis of experimental data

In this section, we apply multiplicative multifracta
analysis to human deep brain recording data as we
generated spike train data. We show that human d
brain neuronal activity data exhibit stochastic featu
that are consistent with the stochastic behavior of r
dom multiplicative processes over certain time sca
and these features can be used to distinguish neu
from GPe and GPi. For comparison purpose, we a
study the data using Fano factor analysis and the m
ods recently proposed by Schiff et al.[28].

4.1. Multiplicative multifractal analysis of raw
recording data

In order to show that the data recorded in diff
ent brain areas are realizations of certain multipli
tive processes, momentsMq(ε) are computed at dif
ferent stages, and Eq.(2) is checked for validity in
certain ε ranges. In the following, we describe
detail a general procedure for obtaining weight
quences at different stages needed for computing
momentsMq(ε).

Assume we use 2N consecutive raw recording vol
age data. For ease of illustration, we denote this o
inal time series as {Vi }; and the square of raw data
{ V 2

i }, by { Xi }. We view {Xi, i = 1, . . . ,2N } as the
weight series of a certain multiplicative process

stageN . Note that the total weight
∑2N

i=1 Xi is set
equal to 1 unit. Also note the scale associated w
stageN is ε = 2−N . This is the smallest time sca
resolvable by the measured human deep brain rec
ing data.

Given the weight sequence at stageN (which
represents the measured data), the weights at s

N −1, {X(21)
i , i = 1, . . . ,2N−1}, is obtained by simply

adding the consecutive weights at stageN over non-

overlapping blocks of size 2, i.e.,X
(21)
i = X2i−1+X2i ,

for i = 1, . . . ,2N−1, where the superscript 21 for

X
(21)
i is used to indicate that the block size us

for the involved summation at stageN − 1 is 21.
This follows directly from the construction of
multiplicative multifractal process, as schematiz
in Fig. 3. Associated with this stage is the sca
ε = 2−(N−1). This procedure is carried out recu
sively. That is, given the weights at stagej + 1,
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Fig. 5. A schematic showing the weights at the last several st
for the analysis procedure described in the text. It is instructiv
compare this figure withFig. 3, where it was shown that a weight
stagei is the sum of the two “daughter” weights at stagesi + 1.

{X(2N−j−1)
i , i = 1, . . . ,2j+1}, we obtain the weights

at stagej , {X(2N−j )
i , i = 1, . . . ,2j }, by adding con-

secutive weights at stagej + 1 over non-overlapping
blocks of size 2, i.e.,

(7)X
(2N−j )
i = X

(2N−j−1)
2i−1 + X

(2N−j−1)
2i ,

for i = 1, . . . ,2j . Here the superscript 2N−j for

X
(2N−j )
i is used to indicate that the weights at stagj

can be equivalently obtained by adding consecu
weights at stageN over non-overlapping blocks o
size 2N−j . Associated with stagej is the scaleε =
2−j . This procedure stops at stage 0, where we h

a single unit weight,
∑2N

i=1 Xi , andε = 20. The latter
is the largest time scale associated with the meas
neural data.Fig. 5schematically shows this procedur

After we have obtained all the weights from stag
0 to N , we compute the momentsMq(ε) according
to Eq. (1) for different values ofq. We then plot
logMq(ε) vs. logε for different values ofq. If these
curves are linear over a wide range ofε, then these
weights are consistent with a multifractal measu
Note that, according to Eq.(2), the slopes of the linea
part of logMq(ε) vs. logε curves provide an estima
of τ(q), for different values ofq.

We illustrate the above procedure by using 217 con-
secutive data points of each data set for this analy
which is around 6.5 seconds. To assess the degre
linearity we plot inFig. 6 log2 Mq(ε) vs. − log2 ε for
voltage data recorded from GPi and GPe of all th
patients. We observe that the scaling betweenMq(ε)

andε (i.e., the degree of linearity between log2 Mq(ε)

and− log2 ε) for all data sets are quite good up to t
9th stage.
f

To further check whether these data sets are t
multifractals, we computeDq for certain ε range.
Here we focus on the time scale range from stag
to stage 4, corresponding to time scales from ab
t1 = 0.01 to t2 = 0.40 s (more precisely, 217−9 and
217−4 sampled points, with a sampling frequen
of 20 kHz). The results are shown inFig. 7. In-
deed we observe that in all casesDq has a non-
trivial dependence onq. Therefore, we conclud
that these time series are consistent with multifr
tals.

More interestingly, theDq spectrum shows clearl
the difference between the neuronal firings in GPe
GPi. This is evident fromFig. 7 where we observe
that there is a clear separation between the value
Dq at very negative values ofq (say,q = −30) for
GPi and GPe (Dq ∼ 1.4 for GPi and∼ 1.2 for GPe).
This result can be understood readily. The small in
vals with smaller weight will dominate the momen
of Mq whenq is very negative. For time scales ju
exceeding the mean ISI, which corresponding to ab
ε = 28 points, some intervals may not contain any n
ronal firing and thus will weigh a lot more for ver
negativeq. As noted before, for GPi, the dischar
is fairly uniform, while for GPe, the firings are mo
bursty and intermittent, and hence may result in m
long time intervals without any firing. As a cons
quence, for very negativeq, Mq for GPe decays slowe
than that for GPi, and hence, a smallerDq . There-
fore, theDq spectrum provides an interesting mea
of quantifying the structures of ISI as well as the d
ferences between the firing patterns of the neuron
GPe and GPi.

We emphasize that based on our analysis of th
patients’ data, the separation between GPe and
based on theDq , q < 0, curves holds not only fo
the same patient, but also across patients. The
ues ofDq were consistent among the three patie
which settled to∼ 1.4 for GPi and∼ 1.2 for GPe.
This result warrants a more rigorous study invo
ing a much larger patient population to verify the
trends.

4.2. Multiplicative multifractal analysis of spike trai
data

We now apply the multiplicative multifractal analy
sis to the spike train data. To do so, we represent
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Fig. 6. log2 Mq(ε) vs.− log2 ε for human brain deep recordings for several differentq ’s.

Fig. 7. The generalized dimension spectrum for recording data of GPi and GPe area of 3 patients.
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der one set
Fig. 8. The generalized dimension spectrum for spike train data of GPi and GPe area of 3 patients. The spike trains are obtained un
of threshold values.
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spike train data by the following: we setXi = 1 when
there is a spike at the positioni, and more or less
arbitrarily setXi = 0.001 when there is no spike
the positioni. After obtaining such a time series, w
then apply the general analysis procedure discu
above to obtain the generalized dimension spect
Dq . Very interestingly, the time scale region defini
the fractal scaling here is the same as that identi
earlier, i.e., fromt1 = 0.01 to aboutt2 = 0.4 s.Fig. 8
shows the result for the spike train data under
set of threshold values used for obtaining the spik
Comparing withFig. 7, we observe that the difference
between theDq , q < 0, curves, for GPe and GPi b
come even larger for the spike train data than for
raw data, especially for the data of patient 1, which
cleanest.

We have further examined how sensitively the
sult ofFig. 8depends on the threshold values used
spike detection. We have found that when the dat
clean, the sequence of the spikes detected is lar
independent of the threshold values. So are theDq

curves. This is evident by comparingFig. 9(c) with
Fig. 8(c), where the spike train forFig. 9(c) is obtained
with a set of smaller threshold values. However, wh
the data is very noisy, the sequence of spikes dete
can be drastically modified by the threshold values.
a result, theDq curves shift upward, sometimes qu
significantly, when the threshold values used for
tecting the spikes are reduced. This can be clearly
by comparingFig. 9(d), (e) withFig. 8(d), (e). While
Fig. 8 indicates that the multifractal model becom
more effective in differentiating GPe from GPi whe
employed to analyze spike data,Fig. 9says the oppo
site.

Our results can be understood readily. When
data is clean, spike detection effectively suppres
noise. Consequently, the multifractal model becom
more effective in distinguishing between GPe and G
However, when data is not very clean, spike det
tion both suppresses and introduces noise. The fo
comes from the fact that noise between spikes has
completely removed, while the latter is due to the f
that spike detection may miss some true spikes w
introduce some false spikes. As a result, the multifr
tal approach could become less effective when dis
guishing GPe from GPi.
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h threshold
Fig. 9. The generalized dimension spectrum for spike train data of GPi and GPe area of 3 patients. The spike trains are obtained wit
values that are smaller than those used inFig. 8.
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4.3. Comparison with other methods

In this subsection, we examine effectiveness of
methods studied in[28] as well as the Fano facto
analysis in differentiating GPe from GPi.

Schiff et al. [28] examined the effectiveness
three simple measures for the analysis of single-
neuronal recording to differentiate the GPi from G
in Parkinson disease. The three measures are: (i
mean firing frequency, which is simply the avera
spike firing rate; (ii) the burst firing ratio of spike
which is defined as the percentage of ISIs that
shorter than 8 ms; and (iii) total average power of r
data, which is obtained by first computing the pow
spectrum within all 0.2048-second windows, and th
getting the average.Table 2lists our results. We ob
serve that none of the measures works at all in
tinguishing between GPe and GPi, just as reported
Schiff et al.[28].

Next we analyze neural firing activities by emplo
ing Fano factor analysis. The Fano factor is defined

(8)F(T ) = Var[Ni(T )]
Mean[Ni(T )] ,
Table 2
Comparison of mean firing frequency (Hz), bursts (percentage o
< 8 ms), and average power from raw data of 3 patients

Measurement Patient 1 Patient 2 Patient 3

GPi GPe GPi GPe GPi GPe

Mean freq. 95 71 101 51 139 135
Bursts (percent) 39.3 44.9 53.7 35.2 69.7 68.7
Average power 4.7 5.3 4.0 1.6 5.3 1.9

whereNi(T ) is the number of spikes in theith window
of durationT . For a Poisson process,F(T ) is 1, inde-
pendent ofT . For a fractal process,F(T ) not only de-
pends onT , but the dependence takes on a power-
form: F(T ) ∼ T 2H−1, whereH is called the Hurst pa
rameter (or Holder exponent)[1,7]. Such a scaling ca
be readily understood, if one notices that for a frac
process such as fractional Brownian motion proce
Var[Ni(T )] ∼ T 2H [37].

In Fig. 10, we plot theF(T ) vs. T curves for all
data sets in log–log scale. For short counting ti
(T → 0), the Fano factors approach unity, beca
there is only zero or one spike in an arbitrarily sh
counting window and such a 0 and 1 counting se
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Fig. 10. log2(F (T )) vs. log2(T )for spike train data of GPi and GPe area of 3 patients. The spikes are the same as those used inFig. 8.
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quence of spikes is a sequence of Bernoulli rand
variables[7]. WhenT � 28, which is equivalent to the
mean of the ISI, for each patient, theF(T ) curve for
GPe is higher than that for GPi. Therefore, the Fa
factor appears to be able to distinguish GPe from
for individual patient, although not as effective as t
multifractal model.

We would like to mention that we have also tri
Fano factor analysis on the raw recording data. We
not able to identify any meaningful fractal scaling r
gion, let alone to distinguish GPe from GPi.

5. Discussion

We have introduced a computational procedure
examine whether neuronal firing data could be ch
acterized by cascade multiplicative multifractals.
studying short time series of duration 6.5 s, from 3 pa-
tients recorded in two brain structures, GPe and G
we have shown that the data are consistent with s
multifractals over certain time scale range, and that
generalized dimension spectrumDq accurately dif-
ferentiates the two brain areas, both intra- and in
patients. In so far as distinguishing GPe and GP
concerned, it is found that the multifractal model
more effective than both conventional methods
cently examined by Schiff et al.[28] as well as the
Fano factor analysis. It is interesting to note that,
trial and error, a well trained experienced motion d
orders specialist could discriminate the two brain ar
in seconds to half minute. Therefore, the multifrac
method may be very useful in helping develop qu
titative methods to advise clinicians during precis
neurosurgery in the operating room.

We have found that applying the multifractal ana
sis directly on the raw neural discharge data app
to be very effective in differentiating GPe and GP
regardless of the degree of noise level in the d
This is because the analysis has built in it a sim
mechanism—summation—to greatly suppress n
in the raw signals. This attribute is very appeali
noticing that spike detection and sorting can be
tremely complicated if the raw recording data is ve
noisy. Of course, if the raw recording data is ve
clean, then it would be better to perform spike det
tion first, to further reduce noise, before one empl
the multiplicative multifractal analysis.
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In our data sets we found that there are three t
scales. One is the small time scale below the m
ISI of about 0.01 s. We have pointed out in Sectio2
that on time scales smaller than the mean ISI, th
is only noise and individual spikes, hence, fractal
havior should not be expected. We have also obse
that, although the scaling behavior for the first 4 sta
(corresponding to time scales of about 0.4 to 3
are consistent with a multifractal structure, they
not useful for the purpose of distinguishing betwe
GPe and GPi. The time scale between 0.01 and 0
is the one that contains the discriminating power
our goal. We have analyzed time series that are m
longer than 217 points, and observed similar behavi
Therefore, we have good reason to believe that dis
guishing GPe from GPi may no longer be possible
time scales beyond 0.4 s. This may reflect propertie
the physiological mechanisms that generate the da

The notion of time scales can help us underst
why some conventional measures are not effectiv
distinguishing GPe from GPi. To illustrate the poi
let us consider why the total average power of r
data may fail to differentiate GPe from GPi. It is ea
to understand that power spectral density has th
contributions: (i) noise between spikes, (ii) shape
individual spikes, and (iii) the spacing between spik
Presumably, only contribution from (iii) would be us
ful for the discrimination of GPe and GPi. Unfortu
nately, the contribution from (iii) has to be much le
significant than those from (i) and (ii). It is thus cle
that total average power of raw data cannot be ef
tive in discriminating GPe from GPi.

The cascade multifractal model can be linked to
cytoarchitecture of the brain. We hypothesize that
ISI patterns at different time scales are related to
local and global neuronal interconnectivity. Since
propagation of neural signals is finite, time scales
ISI may reflect local and progressively longer neig
borhoods of neural interaction, within and outside
given brain area. The smallest time scale defining e
spike might only involve neural signal propagati
within a cell assembly, and hence, not related to
fractal behavior. In fact, we have pointed out in S
tion 2 that fractal analysis has to involve time sca
not smaller than the mean ISI. On the other ha
time scale longer than about 0.4 s might already c
respond to neural interactions beyond GPi and G
hence, also irrelevant to distinguish among the t
structures. These might explain why only the interm
diate time scale is useful for discriminating betwe
GPe and GPi.

Our proposed methodology produced a consiste
quantifiable difference in the time-series recording
tween GPe and GPi within and across patients.
ultimate goal is to develop an intra-operative adv
ing system that generalizes to a much larger pat
population and could be used to speedily and ac
rately confirm DBS targets. This approach could i
prove the success of DBS cases by decreasing i
operative time, improving targeting, and easing
burden of classification by the movement disorder s
cialist. However, these results are simply a proof
concept and additional studies are necessary to
firm whether the observed multifractal trends are u
versal.
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